[Zurück]


Zeitschriftenartikel:

C. Griesser, L. Haobo, E. Wernig, D. Winkler, N. Shakibi-Nia, T. Mairegger, T. Götsch, T. Schachinger, A. Steiger-Thirsfeld, S. Penner, D. Wielend, D. Egger, C. Scheurer, K. Reuter, J. Kunze-Liebhäuser:
"True Nature of the Transition-Metal Carbide/Liquid Interface Determines Its Reactivity";
ACS Catalysis, 11 (2021), S. 4920 - 4928.



Kurzfassung englisch:
Compound materials, such as transition-metal (TM) carbides, are
anticipated to be effective electrocatalysts for the carbon dioxide reduction reaction
(CO2RR) to useful chemicals. This expectation is nurtured by density functional theory
(DFT) predictions of a break of key adsorption energy scaling relations that limit CO2RR
at parent TMs. Here, we evaluate these prospects for hexagonal Mo2C in aqueous
electrolytes in a multimethod experiment and theory approach. We find that surface
oxide formation completely suppresses the CO2 activation. The oxides are stable down to
potentials as low as −1.9 V versus the standard hydrogen electrode, and solely the
hydrogen evolution reaction (HER) is found to be active. This generally points to the
absolute imperative of recognizing the true interface establishing under operando conditions in computational screening of catalyst
materials. When protected from ambient air and used in nonaqueous electrolyte, Mo2C indeed shows CO2RR activity.

Schlagworte:
electrocatalysis, transition-metal carbides, electrochemical CO2 reduction, surface Pourbaix diagram, ab initio thermodynamics, solid/liquid interface, XPS, HER


"Offizielle" elektronische Version der Publikation (entsprechend ihrem Digital Object Identifier - DOI)
http://dx.doi.org/10.1021/acscatal.1c00415


Erstellt aus der Publikationsdatenbank der Technischen Universität Wien.